If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.905t^2+8t-20=0
a = 4.905; b = 8; c = -20;
Δ = b2-4ac
Δ = 82-4·4.905·(-20)
Δ = 456.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-\sqrt{456.4}}{2*4.905}=\frac{-8-\sqrt{456.4}}{9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+\sqrt{456.4}}{2*4.905}=\frac{-8+\sqrt{456.4}}{9.81} $
| 7x-36=100 | | 70=5v-15 | | 5/4=24/x | | 3(x+18)2=24 | | .9(x-2)=18 | | 3/2=3r | | 30=6/5^y | | 4x=(-6x-10)^(1/2) | | 7x=4(2x+11) | | 9x-3=3(3x-8) | | 9x-10=4(2x+7) | | 4(x-1)=2(x-3 | | 5x-6=191 | | c=2(3.14)5.2 | | 80=-16t^2+32t+80 | | 21x+3(-7x+7)=21 | | 8-5w=-22 | | (x+2)^2+1=2x+13 | | 3(x+6)^2-(2x+6)^2=44 | | -4x+14=-18 | | 4m+16-1m+49=0 | | 21x+133/28+4x+100/28=77 | | (z*z*z*z*z*z)-8=0 | | 20x-3x-7x+5=9(x+1) | | Y=-3.7891x+155.38 | | 5=2/3(1)+b | | 0.5x^2-7.5x+8=0 | | 9+-5/6a=5 | | 4-6x-4=32 | | (3x+19/4)+(x+25/7)=11 | | 12(x+2)=5x+36+4x | | -13s−-19s−-13=19 |